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CHAPTER

ONE

AUTOKERNEL

1.1 Introduction

Neural networks are now used in a wide variety of applications. Efficient execution of Neural networks on various
devices plays a critical role for these applications. Facing the rapid evolution of deep learning algorithms, there are
limited qualified programmers to write hand optimized low-level kernels on different hardware platforms. Using auto-
matic optimization tools to generate high-performance implementations become a promising solution.

AutoKernel began as a research project at OPEN AI LAB. The project is now open source. AutoKernel is an operator
optimzation tools for automatically generating high-performance low-level codes for diverse hardware backends. It
aims to accelerate the development of high performance operators on various hardware including specialized acceler-
ators.

1.2 AutoKernel Architecture

AutoKernel consists of three modules
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Operator Generator

This module uses the open source project Halide. Halide is a domain specific language (DSL), embedded in C++,
designed to make it easier to write high-performance image processing code on modern machines. Halide seperates
the algorithm description from its schedule. The input of this module is the algorithm description of operator, and the
output is compiled optimized assembly code/object file for corresponding back-ends.

AutoSearch

AutoSearch is an automatic module for searching optimized schedules for halide operators, using multiple optimization
algorithms (greedy algorithm, reinforce learning, marchine learning, . . . ). It supports searching optimized schedules
on both CPU and GPU, and generate code files running on different platforms (x86 or arm).

AutoKernel Plugin

AutoKernel Plugin realizes one-click integration of auto-generated optimized operator codes into Deep learning infer-
ence framework Tengine, without modifying the core code base of Tengine. AutoKernel plugin “inserts” auto-generated
operator implementations into the deployment framework Tengine, enabling the framework to mixed-use both “auto-
kernels” and “hand-written kernels”.

1.3 Supported backends

Following targets have been tested:

• x86-64-linux

• x86-64-linux-opencl

• x86-64-linux-cuda

• arm-64-linux

• arm-64-linux-opencl

More target archs/features:

• arch:arm, hexagon, mips, powerpc, riscv, wasm, x86.

• bits32, 64

• osandroid, ios, linux, windows. . .

• features: avx, avx2, avx512, cl_half, cuda, opencl. . .
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CHAPTER

TWO

INSTALL FROM SOURCE

1. Compile & install Halide

git clone https://github.com/halide/Halide
cd Halide && mkdir build && cd build
export HALIDE_DIR=/path/halide-install # you can revise the path according to␣
→˓specific circumstances
cmake .. -DTARGET_WEBASSEMBLY=OFF -DCMAKE_INSTALL_PREFIX=${HALIDE_DIR}
make -j `nproc` && make install # compile & install

2. Compile Tengine

git clone https://github.com/OAID/Tengine.git
cd Tengine && mkdir build && cd build
export TENGINE_DIR=/path/tengine-install # Tengine Installation path
cmake .. -DCMAKE_INSTALL_PREFIX=${TENGINE_DIR}
make -j `nproc` && make install # compile & install

3. Compile AutoKernel

git clone https://github.com/OAID/AutoKernel.git
cd AutoKernel/autokernel_plugin
find . -name "*.sh" | xargs chmod +x #Add executable permissions to sh script

Edit the installation path of Halide library in ./scripts/generate.sh

# Modify the HALIDE_DIR path in the first line to the installation path in the␣
→˓first step
export HALIDE_DIR=/path/halide-install

Edit Tengine’s installation path, open the TENGINE_ROOT in autokernel_plugin/CMakeLists.txt

set(TENGINE_ROOT /path/Tengine) # Modify the directory where the Tengine project is␣
→˓located
set(TENGINE_DIR /path/tengine-install) # Modify to the installation path in the␣
→˓second step

Compile AutoKernel

./scripts/generate.sh #Automatically generate operator assembly file
mkdir build && cd build
cmake .. && make -j `nproc`
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Add the path where libautokernel.so is located to LD_LIBRARY_PATH, and execute it in the AutoKernel/
autokernel_plugin/build/ directory

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:`pwd`/src/

Execute the test program in the AutoKernel/autokernel_plugin directory

./build/tests/tm_classification

Execution results see as follows

start to run register cpu allocator

......

[INFO]: using halide maxpooling....
[INFO]: using halide maxpooling....
[INFO]: using halide maxpooling....
current 53.934 ms

Model name : squeezenet
tengine model file : models/squeezenet.tmfile
label file : models/synset_words.txt
image file : images/cat.jpg
img_h, imag_w, scale, mean[3] : 227 227 1 104.007 116.669 122.679

Repeat 1 times, avg time per run is 53.934 ms
max time is 53.934 ms, min time is 53.934 ms
--------------------------------------
0.2732 - "n02123045 tabby, tabby cat"
0.2676 - "n02123159 tiger cat"
0.1810 - "n02119789 kit fox, Vulpes macrotis"
0.0818 - "n02124075 Egyptian cat"
0.0724 - "n02085620 Chihuahua"
--------------------------------------
ALL TEST DONE
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CHAPTER

THREE

BASED ON DOCKER

AutoKernel provides docker imagewhere Halide and Tengine have been installed:

3.1 Docker Image:

• cpu

docker pull openailab/autokernel

• cuda:

nvidia-docker pull openailab/autokernel:cuda

[NOTE]: To use cuda image, you need to use nvidia-docker, detalis see here nvidia-docker install-guide.

• opencl:

docker pull openailab/autokernel:opencl

3.2 Dockerfile

Detailed Dockerfile see

• Dockerfile.cpu

• Dockerfile.cuda

• Dockerfile.opencl

3.3 AutoKernel tutorials for installation

1. Pull the image (it may take a while, please wait patiently, depending on the network speed, it may take 10-20mins)

docker pull openailab/autokernel

2. Create a container and enter the development environment

docker run -ti openailab/autokernel /bin/bash

3. Halide, Tengine have been installed in docker
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/workspace/Halide # Halide
/workspace/Tengine # Tengine

4. AutoKernel

git clone https://github.com/OAID/AutoKernel.git

Add executable permissions to sh scripts and automatically generate operator assembly files

cd AutoKernel/autokernel_plugin
find . -name "*.sh" | xargs chmod +x
./scripts/generate.sh

Compile

mkdir build && cd build
cmake .. && make -j `nproc`

Run test

cd AutoKernel/autokernel_plugin
./build/tests/tm_classification -n squeezenet

3.4 Halide in Docker

Halide has been installed in Autokernel docker, and the Python API has been configured.

Halide related files are all in/workspace/Halide/ directorythe install files of Halide are all in/workspace/Halide/
halide-build directory

cd /workspace/Halide/halide-build

• Halide-related files are in /workspace/Halide/halide-build/include

root@bd3faab0f079:/workspace/Halide/halide-build/include# ls

Halide.h HalideRuntimeHexagonDma.h
HalideBuffer.h HalideRuntimeHexagonHost.h
HalidePyTorchCudaHelpers.h HalideRuntimeMetal.h
HalidePyTorchHelpers.h HalideRuntimeOpenCL.h
HalideRuntime.h HalideRuntimeOpenGL.h
HalideRuntimeCuda.h HalideRuntimeOpenGLCompute.h
HalideRuntimeD3D12Compute.h HalideRuntimeQurt.h

• Compiled Halide library are in/workspace/Halide/halide-build/src diectory, where we can find
libHalide.so

root@bd3faab0f079:/workspace/Halide/halide-build/src# ls
CMakeFiles autoschedulers libHalide.so.10
CTestTestfile.cmake cmake_install.cmake libHalide.so.10.0.0
Makefile libHalide.so runtime

• Run Halide

6 Chapter 3. Based on Docker
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cd /workspace/Halide/halide-build
./tutorial/lesson_01_basics

Execution Results

Success!

• Run the Python interface of HalideFirst look up the system path of Python

python
>>>import sys
>>> sys.path
['', '/root', '/workspace/Halide/halide-build/python_bindings/src', '/usr/lib/
→˓python36.zip', '/usr/lib/python3.6', '/usr/lib/python3.6/lib-dynload', '/usr/
→˓local/lib/python3.6/dist-packages', '/usr/lib/python3/dist-packages']

We can see that the Python system path already has Halide’s compiled python package path'/workspace/
Halide/halide-build/python_bindings/src'

python
>>> import halide

import halide

3.5 Tengine in Docker

There has been Tengine installed in Autokernel dockerrelated files are all in/workspace/Tengine/directory.

cd /workspace/Tengine/build

• Tengine related files are all in/workspace/Tengine/build/install/include

root@bd3faab0f079:/workspace/Tengine/build/install/include# ls

tengine_c_api.h
tengine_cpp_api.h

• Compiled Tengine library are in /workspace/Tengine/build/install/libdirectory, where we can
findlibtengine-lite.so

root@bd3faab0f079:/workspace/Tengine/build/install/lib# ls

libtengine-lite.so

• Run Tengine

This example run the performance benchmark of each network model of Tengine on the target computer.

cd /workspace/Tengine/benchmark
../build/benchmark/tm_benchmark

Execution results

3.5. Tengine in Docker 7
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start to run register cpu allocator
loop_counts = 1
num_threads = 1
power = 0
tengine-lite library version: 1.0-dev

squeezenet_v1.1 min = 32.74 ms max = 32.74 ms avg = 32.74 ms
mobilenetv1 min = 31.33 ms max = 31.33 ms avg = 31.33 ms
mobilenetv2 min = 35.55 ms max = 35.55 ms avg = 35.55 ms
mobilenetv3 min = 37.65 ms max = 37.65 ms avg = 37.65 ms
shufflenetv2 min = 10.93 ms max = 10.93 ms avg = 10.93 ms

resnet18 min = 74.53 ms max = 74.53 ms avg = 74.53 ms
resnet50 min = 175.55 ms max = 175.55 ms avg = 175.55 ms

googlenet min = 133.23 ms max = 133.23 ms avg = 133.23 ms
inceptionv3 min = 298.22 ms max = 298.22 ms avg = 298.22 ms

vgg16 min = 555.60 ms max = 555.60 ms avg = 555.60 ms
mssd min = 69.41 ms max = 69.41 ms avg = 69.41 ms

retinaface min = 13.14 ms max = 13.14 ms avg = 13.14 ms
yolov3_tiny min = 132.67 ms max = 132.67 ms avg = 132.67 ms

mobilefacenets min = 14.95 ms max = 14.95 ms avg = 14.95 ms
ALL TEST DONE

8 Chapter 3. Based on Docker



CHAPTER

FOUR

AUTOSEARCH

AutoSearch is an automatic module for automatically searching optimized schedules for halide operators. It supports
optimized schedules on both CPU and GPU, and generate code files running on different platforms (x86 or arm). We
also offer a method to optimize the input data layout (called data transform).

We provide:

• one-click compilation to compute time of manual schedule

• one-click autotune to generate schedule

• evaluation template to verify correctness

4.1 Install

Before using AutoSearch, please install Halide. You can directly using Autokernel docker with Halide installed in
/workspace/Halide/.

docker pull openailab/autokernel

install AutoSearch with the following commands:

export HALIDE_HOME=<path>/<to>/Halide
cd <path>/<to>/AutoKernel/AutoSearch
mkdir build & cd build
cmake ..
make -16

4.2 Toolkit usefule parameters

• --gen: the generator file

• --target: backend target, we have tested the following targets:

– x86-64-linux

– x86-64-linux-opencl

– x86-64-linux-cuda

– arm-64-linux

– arm-64-linux-opencl
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More:

– arch:arm, hexagon, mips, powerpc, riscv, wasm, x86.

– bits32, 64

– osandroid, ios, linux, windows. . .

– features: avx, avx2, avx512, cl_half, cuda, opencl. . .

• -autotune: using autotunung to generate schedules

– CUDA: using sioutas2020 autoschedule

– OpenCL: using li2018 autoschedule

– CPU: using adams2019 autoschedule, with 2 more arguments:

∗ num_tune_loops: number of iterations to retrain cost model

∗ batch_size: for each iteration, the number of samples to get featurization and runtime-cost

• -compute_time:

– compute_samples: repeat to take minimum time

– num_iterators: repeat to take average time

the pseudocode is:

avg_times=[]
for i in compute_samples:

time_start
for j in num_iterators:

//func
time_end
avg_time=(time_end-time_start)/num_iterators

avg_times.append(avg_time)
print("autokernel time: min(avg_times)")

• data transform: using automatic data transforming to find a better input data layout

4.3 Evaluate Manual Schedule Time

All following tests are with default shape config M=N=K=512 for matmul op.

1. CPU: x86-64-linux

cd toolkit
python3 tools.py --gen ../generator/batch_matmul.cpp --target x86-64-linux -compute_time

Tested on Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz, it gets:

autokernel time: 1.79585 ms

1. Nvida GPU: CUDA

10 Chapter 4. AutoSearch
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cd toolkit
python3 tools.py --gen ../generator/batch_matmul.cpp --target x86-64-linux-cuda -compute_
→˓time

Tested on GeForce GTX 1080 Ti, it gets:

autokernel time: 0.6114 ms

1. ARM CPU

this depends on GNU C++ cross compile toolchain aarch64-linux-gnu-g++

cd toolkit
python3 tools.py --gen ../generator/batch_matmul.cpp --target arm-64-linux -compute_time␣
→˓--num_iterators 10

copy the executable file to RK3399, and run

scp samples/demo_run firefly@xx.xx.xx.xx:/home/firefly
ssh firefly@xx.xx.xx.xx
cd /home/firefly
./demo_run

Tested on RK3399, it gets:

autokernel time: 245.7393 ms

1. ARM Mali GPU: Opencl

cd toolkit
python3 tools.py --gen ../generator/batch_matmul.cpp --target arm-64-linux-opencl -
→˓compute_time --num_iterators 10

Tested on RK3399 Mali-T860 , it gets:

autokernel time: 126.4644 ms ms

4.4 AutoTune: Evaluate Generated Schedule Time

1. CPU: x86-64-linux

cd toolkit
python3 tools.py --gen ../generator/batch_matmul.cpp --target x86-64-linux -autotune -
→˓compute_time

Tested on Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz, it gets:

autokernel time: 0.880885 ms

1. Nvida GPU: CUDA

cd toolkit
python3 tools.py --gen ../generator/batch_matmul.cpp --target x86-64-linux-cuda -
→˓autotune -compute_time (continues on next page)

4.4. AutoTune: Evaluate Generated Schedule Time 11
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(continued from previous page)

Tested on GeForce GTX 1080 Ti, it gets:

autokernel time: 0.604405 ms

1. ARM CPU

cd toolkit
python3 tools.py --gen ../generator/batch_matmul.cpp --target arm-64-linux-opencl -
→˓autotune -compute_time --num_iterators 10

Tested on RK3399 , it gets:

autokernel time: 470.75 ms ms

The generated arm-cpu schedules are not satisfying, since this workflow is based on baseline.weights, not retrained on
real arm cpu.

1. ARM Mali GPU

cd toolkit
python3 tools.py --gen ../generator/batch_matmul.cpp --target arm-64-linux -autotune -
→˓compute_time --num_iterators 20

Tested on RK3399 Mali-T860 , it gets:

autokernel time: 87.249 ms

4.5 DataTransform

During the autotune process, you can use automatic data transforming to find a better input data layout.

cd toolkit
python3 tools.py --gen ../generator/batch_matmul.cpp --target x86-64-linux -autotune -
→˓compute_time -datatransform

4.6 Correctness verification template

Demo code is provided in toolkit/template/demo_eval.cpp to demostrate how to compile generate codes and
verify correctness.

In the example of matmul of size 512, generated codes are in directory toolkit/template/samples, we need to
include generated header and call the function

#include "demo_1_512_512_512.h"

matmul(Halide_A,Halide_B,Halide_C);

compile

12 Chapter 4. AutoSearch
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export HALIDE_BUILD=/workspace/Halide/halide_build
# For x86-64-linux:
g++ demo_eval.cpp demo_1_512_512_512.s -I $HALIDE_BUILD/include -ldl -lpthread -o demo_
→˓eval

# For arm-64-linux:
aarch64-linux-gnu-g++ demo_eval.cpp demo_1_512_512_512.s -I $HALIDE_BUILD/include -ldl -
→˓lpthread -o demo_eval

If implementation consistent with ref_func, it will get

Correctness check passed!

4.6. Correctness verification template 13
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CHAPTER

FIVE

AUTOKERNEL PLUGIN

Using autokernel docker

# Pull the image (may take a while, please be patient)
docker pull openailab/autokernel
# Start the container and enter the development environment
docker run -it openailab/autokernel /bin/bash

Installed Halide and Tengine are provided in docker

/workspace/Halide # Halide
/workspace/Tengine # Tengine

Clone AutoKernel

git clone https://github.com/OAID/AutoKernel.git

Let’s see the directory ofautokernel_plugin/src/

autokernel_plugin/src/
|-- CMakeLists.txt
|-- direct_conv
| |-- build.sh
| |-- direct_conv.cpp
| |-- direct_conv.h
| |-- direct_conv_gen.cc
|-- im2col_conv
| |-- build.sh
| |-- im2col_conv.cpp
| |-- im2col_conv.h
| `-- im2col_conv_gen.cc
`-- plugin_init.cpp

We can see that there are two folders in the src directory, each of which contains:

• xxx_gen.cc, use Halide language operator description (algorithm) and scheduling strategy (schedule)

• build.sh is used to compile xxx_gen

• xxx.h and xxx.cpp are operator implementations encapsulated by the Tengine operator interface

One-click operator assembly code generation

cd AutoKernel/autokernel_plugin
bash ./scripts/generate.sh

15
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When finishing this step, we can see that there are two more automatically generated files in the original directory:

|-- im2col_conv
| |-- halide_im2col_conv.h
| |-- halide_im2col_conv.s
|-- direct_conv
| |-- halide_direct_conv.h
| `-- halide_direct_conv.s

Next, use the automatically generated file to register Autokernel into tengine, and compile libAutoKernel.so with one
click

mkdir build
cd build
cmake ..
make -j4

The generated library is in/workspace/AutoKernel/autokernel_plugin/build/src/libautokernel.so To
run the test, call load_tengine_plugin() in the test code:

cd AutoKernel/autokernel_plugin
./build/tests/tm_classification -n squeezenet

The results of the classification network are as follows:

AutoKernel plugin inited
function:autokernel_plugin_init executed

...

Repeat 1 times, avg time per run is 55.932 ms
max time is 55.932 ms, min time is 55.932 ms
--------------------------------------
0.2732 - "n02123045 tabby, tabby cat"
0.2676 - "n02123159 tiger cat"
0.1810 - "n02119789 kit fox, Vulpes macrotis"
0.0818 - "n02124075 Egyptian cat"
0.0724 - "n02085620 Chihuahua"
--------------------------------------
ALL TEST DONE

As you can see, the output shows that AutoKernel plugin is called.

16 Chapter 5. AutoKernel Plugin



CHAPTER

SIX

TENGINE: QUICK START

Tengine is a lightweight deep neural network inference framework. This document will take the classification model
(Squezenet model) as an example (based on the x86 Linux platform) to take you quickly to get started with Tengine.

6.1 Deep learning neural network calculation process

Concept

-Neural network: Neural network can be understood as a graph. A graph is composed of multiple operator nodes.
These nodes can be Convolution or Pooling. , Fully connected operator (Fc), etc.

-Neural network model: The neural network model is trained by the deep learning training framework (Tensorflow,
Caffe, Pytorch, Mxnet, etc.). The model contains two pieces of information:-The computational graph structure of the
neural network-The weight data of the operator

Calculation process

inference

1. Load the model: get the neural network structure and weight data

2. Prepare input data, feed input data

17
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3. Perform model inference calculations

4. Get output data

6.2 Tengine Squeezenet Example

This example will follow the neural network inference calculation process to demonstrate how to perform the inference
calculation of the Squeezenet classification network in Tengine

1. Loading model

/* load model */
graph_t graph = create_graph(NULL, "tengine", model_file);

model_fileIs a model file in tengine format”squeezenet.tmfile”

2. Prepare input data, feed input data

/* prepare input data */
tensor_t input_tensor = get_graph_input_tensor(graph, 0, 0);
set_tensor_shape(input_tensor, dims, 4);
set_tensor_buffer(input_tensor, input_data, img_size * sizeof(float));

3. Perform model inference calculations

/* forward */
run_graph(graph, 1);

4. Get output data

/* get result */
tensor_t output_tensor = get_graph_output_tensor(graph, 0, 0);
float* output_data = ( float* )get_tensor_buffer(output_tensor);

• codes

– The full codes see here: data/02_tengine_tutorial.cpp.

– Tool functions see here: tengine_operations.h

• Compile

cd tutorials/data
cp /workspace/Tengine/examples/common -r .
mkdir build
cd build
cmake ..
make

• Execute

cd tutorials/data/build

#Download model & figure
wget https://github.com/OAID/TengineModels/raw/main/images/cat.jpg .

(continues on next page)

18 Chapter 6. Tengine: Quick start
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(continued from previous page)

wget https://github.com/OAID/TengineModels/raw/main/tmfiles/squeezenet.tmfile .
./02_tengine_tutorial

Get results

0.273198, 281
0.267550, 282
0.181006, 278
0.081798, 285
0.072406, 151
--------------------------------------
ALL TEST DONE

This is a classification network, 1000 classes, index from 0 to 999, each category has a probability score, the
running result prints out the top 5 probability scores and index.

6.3 More Tengine Examples

More Tengine application examples are in Tengine/examples:

• Classification

• Face key point detection

• ssd target detection

• retinaface face detection

• yolact instance segmentation

• yolov3 target detection

• yolov4-tiny target detection

• openpose human body gesture recognition

• crnn Chinese character recognition

6.3. More Tengine Examples 19
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CHAPTER

SEVEN

HALIDE

7.1 Introduction to Halide

Halide is an open source, domain specific language (DSL) designed to make it easier to write high-performance image
and array processing code on modern machines.

7.1.1 Embedded in C++

Halide is a domain specific language (DSL) embedded in C++. This means you write C++ code that builds an in-
memory representation of a Halide pipeline using Halide’s C++ API.

7.1.2 Decouple algorithm from schedule

Halide separates the program into two conceptual parts:

• The algorithm – Defines what is computed at each pixel

• The schedule – Defines how the computation should be organized

Through this design, developers can focus on how to implement their algorithm in isolation from how it should be best
scheduled for execution, to optimize for locality, parallelism, and ultimately performance.

7.1.3 Compile

Halide offers two modes to perform this compilation:

• Ahead of Time (AOT): Halide is first compiled to a header and object file and then statically linked by the
developer into their app.

• Just in Time (JIT): performs compilation at runtime (i.e., while the app is running) but requires that the Halide
compiler be hosted on the target platform.
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7.1.4 Target

Halide currently targets:

• CPU architectures: X86, ARM, MIPS, Hexagon, PowerPC, RISC-V

• Operating systems: Linux, Windows, macOS, Android, iOS, Qualcomm QuRT

• GPU Compute APIs: CUDA, OpenCL, OpenGL Compute Shaders, Apple Metal, Microsoft Direct X 12

7.1.5 Resources

• github: https://github.com/halide/Halide

• For API doc, see http://halide-lang.org/docs

Ref:

1. https://halide-lang.org/

2. https://developer.qualcomm.com/blog/optimizing-image-processing-algorithms-halide

7.2 Algorithm

Every Halide program has two parts, an algorithm and a schedule. The algorithm defines what is computed at each
pixel. Here we present the constructs that Halide provides to write an algorithm.

7.2.1 Func

Func: a pure function, defining image values over some domain. In the following example, f is a Func that is used to
compute an image where every pixel is the sum of its x and y coordinates.

f(x, y) = x + y;

A Func can be an input to another Func. In this case, an image processing pipeline can be constructed by cascading
multiple Funcs (each of which is a pipeline stage) in producer-consumer relationships.

f(x, y) = x + y;
g(x, y) = f(x, y) + 1;
h(x, y) = g(x, y) * 2;

f, g and h are all Funcs, each representing a stage of this pipeline. h is the final stage of the pipeline.

7.2.2 Var

Var: a free variable in the domain of a function.

blur_x(x , y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;

In this example, x and y have no meaning on their own. However, when used with the blur_x and input Funcs, they
signify the two dimensions of these Funcs.

22 Chapter 7. Halide
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7.2.3 Expr

An Expr in Halide is composed of Funcs, Vars, and other Exprs, for example: of Exprs in Halide.

Expr e = x + y;
Output(x, y) = 3*e + x;

In these examples, x and y are Vars, e is an Expr, and Output is a Func.

7.3 Schedule

The schedule specifies how the algorithm computation is to be structured/organized.

There are mainly two kinds of schedules:

• schedules within stages

• schedules across stages

7.3.1 Schedules within stages: Domain Order

Schedules within one stage define the order of iteration domain of function, using a traditional set of loop transformation
concepts, applied to the dimensions of the function. In the Halide’s schedule language, these choices are applied as
annotations on each function.

• Dimensions can be traversed sequentially (the default) or in parallel f.parallel(y).

• Constant-size dimensions can be unrolled f.unroll(x) or vectorized f.vectorize(x)

• Dimensions can be reordered (e.g., from column- to row-major: f.reorder(y, x)).

• Dimensions can be split by some factor, creating two new dimensions: an outer dimension, and an inner dimen-
sion (f.split(x,outer,inner,factor).

• Dimensions can be fused, turning two dimensions into one (f.fuse(x, y)).

7.3.2 Schedules across stages: Call Schedule

In addition to the order of evaluation within the domain of each function, the schedule also specifies the granularity
with which to interleave the computation and storage of each function with the domain of the functions that call it. We
call these choices the call schedule. In the language of Halide’s schedules, we control the call schedule of each function
with annotations as followings:

7.4 Halide: Quick start

Before we dive into Halide, let’s experience Halide’s magic.

Enter AutoKernel’s docker, there is already Halide’s python environment in docker, just run

python data/03_halide_magic.py

Here are the output
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func_origin__ cost 0.510215 second
func_parallel cost 0.122265 second

The above script performs a simple function calculationfunc[x,y] = x + 10*yCompare the running time of the two
functions-func_origin: default function-func_parallel: Added a scheduling strategy of Halide: func.parallel(y,4),
parallelizes the y dimension, and the parallelism is 4

As you can see, the second function takes a quarter of the time of the first function.

No need to optimize the assembly knowledge at the bottom, just add a line of code, you can get a better optimization
effect.

7.4.1 Language basic of Halide

If you want to call Halide’s scheduling strategy, you must first master the basic Halide language, and use Halide language
to describe the calculation of operators. The following simple functions are used to demonstrate the basic data structure
of the Halide language.

-Variable Var: It can be understood as an independent variable of a function. For example, to describe the pixels
of an image, two variables x and y are needed to describe the coordinates of the w dimension and the h dimension.-
Function Func: Similar to mathematical functions, it defines a calculation process. The complex calculation process
can be divided into multiple small functions to achieve.

Example one

The function calculation formula of this example is: func(x,y)= 10*y + xUse Halide language to describe this
function:

• Python:

import halide as hl

x, y = hl.Var("x"), hl.Var("y")
func = hl.Func("func")
func[x,y] = x + 10*y

• C++

#include "Halide.h"
using namespace Halide;

Var x("x"), y("y");
Func func("func");

func(x, y) = x + 10 * y;

Func’s realize will calculate the value of the function in the domain and return the numerical result. After calling
realize, the function is jit-compile. Before that, only the calculation process of the function is defined.

Look up the calculation result.

• Python:
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out = func.realize(3, 4) # width, height = 3,4

for j in range(out.height()):
for i in range(out.width()):

print("out[x=%i,y=%i]=%i"%(i,j,out[i,j]))

• C++

Buffer<int32_t> out = func.realize(3, 4);

for (int j = 0; j < out.height(); j++) {
for (int i = 0; i < out.width(); i++) {

printf("out[x=%d,y=%d]=%d",i,j,out(i,j));
}

}

The process of function is

wide = 3
x=0 x=1 x=2

------------
y=0 | 0 1 2

hight = 4 y=1 | 10 11 12
y=2 | 20 21 22
y=3 | 30 31 32

Full codes see here data/03_halide_basic.py we can run directly

python data/03_halide_basic.py

In addition, you can call func.trace_stores() to track the value of the function

Example Two

This example demonstrates how to feed input data and remove output data.Full codes see
heredata/03_halide_feed_data.py

The function of this example:

B(x,y)=A(x,y)+1

A is the input data, you can define Halide.Buffer, and then feed the numpy array data into the buffer

# feed input
input_data = np.ones((4,4),dtype=np.uint8)
A = hl.Buffer(input_data)

Function B

i,j = hl.Var("i"), hl.Var("j")
B = hl.Func("B")
B[i,j] = A[i,j] + 1

There are several ways to obtain output data

7.4. Halide: Quick start 25

data/03_halide_basic.py
data/03_halide_feed_data.py


AutoKernel

# 1
output = B.realize(4,4)
print("out: \n",np.asanyarray(output))

# 2
output = hl.Buffer(hl.UInt(8),[4,4])
B.realize(output)
print("out: \n",np.asanyarray(output))

# 3
output_data = np.empty(input_data.shape, dtype=input_data.dtype,order="F")
output = hl.Buffer(output_data)
B.realize(output)
print("out: \n",output_data)

We can run the full codes

python data/03_halide_feed_data.py
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CHAPTER

EIGHT

OPTIMIZATION TUTORIAL OF GEMM ON X86

Here, this tutorial will lead you to optimize the matrix multiplication GEMM step by step. There is no need to manually
code, compile complicated and lengthy low-level assembly code, but only need a dozen lines of concise scheduling
code.

gemm.jpg

Two optimization goalsBefore explaining the optimization steps in detail, let’s talk about the essence of optimization.
When we were talking about “optimization”, what did the bottom layer of the computer do? What is the “bottleneck”
of optimization? Why can performance be improved through a wave of “optimization operations”? How does Halide
used by AutoKernel achieve automatic optimization?To answer these questions, we need to understand the basic archi-
tecture of the hardware and understand how the hardware works, so that when implementing algorithms in software, we
should consider using some of the characteristics of the hardware as much as possible to achieve efficient and extreme
optimization.
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memory.png

Operating environment preparationAutoKernel provides a docker image, with the running environment being con-
figured, and user can run the demo code directly after entering the docker

# Pull mirror
docker pull openailab/autokernel
# Start the container and enter the development environment
docker run -it openailab/autokernel /bin/bash
# access codes
git clone https://github.com/OAID/AutoKernel.git
cd AutoKernel/doc/tutorials/data/

The build.sh in the directory is the execution script of the demo. To run, user need to specify the optimization step ‘step’.
The optional step is from 1 to 7, where step=1 is not optimized by default, and step=7 is the most optimized.Effect of
optimization

# run demo
./build.sh 1
./build.sh 7

The following figure shows the optimization effect on a computer with Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz.
There is no need to manually write code, no need to write complicated and lengthy low-level assembly code, only a
dozen lines of concise scheduling code , The performance can be optimized by 200+ times.

Figure1.png

Detailed optimizatio stepsSTEP 1The first step is without any optimization. Use Halide language to directly describe
the calculation process of GEMM.
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1. Var x,y;
2. RDom k(0, K);
3. Func gemm("gemm");
4. gemm(x, y) += A(k, y) * B(x, k);

Calculate the matrix multiplication of M=N=K=640. The first parameter of the running script specifies step=1. The
time-consuming results are as follows

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 1
step = 1
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 240.8523 ms ␣
→˓1.1376 ms

STEP 2In this step, we use tiled tiles. The purpose of Tiling is to make full use of the cache. If the original loop is
large, the tiles are changed to small pieces of data to calculate, so that the data calculated each time can stay in the cache
more comfortably, without repeated eviction (repeat adding and deleting data in the cache) . The reorder operation is
performed after the block is divided, the order of the two nested loops is exchanged, and the purpose is to make the
innermost memory access friendly. We divide the x and y dimensions into 16x8 small blocks to calculate

1. gemm.update()
2. .tile(x, y, xo, yo, xi, yi, 16, 8)
3. .reorder(xi, yi, k, xo, yo);

execution result

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 2
step = 2
M N K = 640 640 640 err 0.00 [rep 50] halide | blas 81.8148 ms 1.1281 ms

Performance has been optimized from 240ms to 82ms, an increase of nearly 3 times.

STEP 3We add ‘vectorize’ based on the previous step. Vectorization is to convert several scalar calculations (scale) into
a vector calculation (vector), making full use of SIMD vector instructions. Most modern CPUs support SIMD (Single
Instruction Multiple Data). In the same CPU cycle, SIMD can execute the same operation/instruction on multiple
values at the same time.

1. gemm.update()
2. .tile(x, y, xo, yo, xi, yi, 16, 8)
3. .reorder(xi, yi, k, xo, yo)
4. .vectorize(xi, 8);

execution result

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 3
step = 3
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 27.5433 ms ␣
→˓1.1445 ms

The performance was optimized from 82ms to 27ms, which was accelerated by nearly 3 times. It can
be found that around the two optimization purposes mentioned above: optimizing memory access and
improving parallelism, from step1 to step3, the performance has been improved by nearly 9 times.

STEP 4The scheduling strategy adds parallelization on the basis of step3. Parallelizing a loop is to divide each iteration
of the loop into multiple threads or processors for simultaneous processing. Each thread processes through the code
segment (loop body), but processes different data.
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1. gemm(x, y) += A(k, y) * B(x, k);
2. gemm.update()
3. .tile(x, y, xo, yo, xi, yi, 16, 8)
4. .reorder(xi, yi, k, xo, yo)
5. .vectorize(xi, 8)
6. .parallel(yo);

execution result

root@bd3faab0f079:/home/chunying/AutoKernel/doc/tutorials# ./06_build.sh 4
step = 4
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 7.2605 ms ␣
→˓1.1605 ms

After adding parallelization, build.sh specifies four threads by default, and the performance is directly
increased by nearly 4 times, from 27ms to 7.3ms.

STEP 5The scheduling strategy adds unroll expansion on the basis of the previous step. If the statements in the loop
body have no data-related dependencies, loop unrolling can increase the chance of concurrent execution, make full use
of registers, and reduce the number of times each operation memory is loaded and saved during the loop.

1. gemm.update()
2. .tile(x, y, xo, yo, xi, yi, 16, 8)
3. .reorder(xi, yi, k, xo, yo)
4. .vectorize(xi, 8)
5. .parallel(yo)
6. .unroll(xi)
7. .unroll(yi,2);

execution result

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 5
step = 5
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 4.7617 ms ␣
→˓1.1597 ms

After unroll is expanded, the performance is optimized from 7.3ms to 4.8ms.

STEP 6The previous block is divided into 16 x 8 small kernels. This step is first divided into 16 x 32 blocks, and then
each block is divided into 16 x 8 sub-blocks. We merge the two outermost loops into one layer and parallelize this layer.
The calculation description in this step adds a prod function to define the calculation of sub-blocks. The calculation
formula of the prod function is the same as the total gemm. We use compute_at to specify the calculation of prod under
the one dimension, and the calculation of prod is 16x8. kernel, the general logic is as follows:
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step6.png

Codes are listed below

1. Func prod;
2. prod(x, y) += A(k, y) * B(x, k);
3. gemm(x, y) = prod(x, y);
4.
5. gemm.tile(x, y, xi, yi, 16, 32)
6. .fuse(x, y, xy).parallel(xy)
7. .split(yi, yi, yii, 4)
8. .vectorize(xi, 8)
9. .unroll(xi)
10. .unroll(yii);
11.
12. prod.compute_at(gemm, yi)
13. .vectorize(x, 8).unroll(y);
14.
15. prod.update()
16. .reorder(x, y, k)
17. .vectorize(x, 8)
18. .unroll(x)
19. .unroll(y)
20. .unroll(k, 2);

execution result

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 6
step = 6
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 3.1824 ms ␣
→˓1.1373 ms

The performance of this step has been optimized by nearly 80 times from STEP1, and the performance is
getting closer and closer to OpenBlas.

STEP 7The operation added in this step is to rearrange the data of matrix B to make the memory read smoother when
calculating the small kernel 16x8. Because the x dimension of the small kernel is divided according to 16, the x
dimension of rearranged data B is also rearranged according to 16.
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Codes are listed below

1. Func B_interleave("B"), Bs("Bs");
2. Bs(x, y, xo) = B(xo * 16 + x, y);
3. B_interleave(x, y) = Bs(x % 16, y, x / 16);
4.
5. Func prod;
6. prod(x, y) += A(k, y) * B_interleave(x, k);
7. gemm(x, y) = prod(x, y);
8.
9. gemm.tile(x, y, xi, yi, 16, 32)
10. .fuse(x, y, xy).parallel(xy)
11. .split(yi, yi, yii, 4)
12. .vectorize(xi, 8)
13. .unroll(xi)
14. .unroll(yii);
15.
16. prod.compute_at(gemm, yi)
17. .vectorize(x, 8).unroll(y);
18.
19. prod.update()
20. .reorder(x, y, k)
21. .vectorize(x, 8)
22. .unroll(x)
23. .unroll(y)
24. .unroll(k, 2);
25. Bs.compute_root()
26. .split(y, yo, yi, 16)
27. .reorder(x, yi, xo, yo)
28. .unroll(x)
29. .vectorize(yi).parallel(yo, 4);
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execution result

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 7
step = 7
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 1.1957 ms ␣
→˓1.1425 ms

So far, every step of our tuning strategy has always been optimized around the two optimization purposes “optimizing
memory access” and “improving parallelism”. In the end, the performance is almost the same as OpenBlAS, and the
distance from STEP1 has been accelerated by 200+ times.
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CHAPTER

NINE

THE POWER OF AUTOKERNEL: OPTIMIZE THE PERFORMANCE OF
GEMM BY 200 TIMES!

With the rapid development of AI technology, deep learning has been widely used in various fields. Whether the deep
learning model can be successfully applied to the terminal and meet the product needs, a key indicator is the reasoning
performance of the neural network model. As a result, a large wave of algorithm engineers transferred to operator
optimization engineers for the deployment of algorithms. However, optimizing code is not a simple task. It requires
engineers not only to be proficient in computer architecture, but also to be familiar with the calculation process of
the algorithm. Therefore, a little experienced deep learning reasoning optimization engineer has become the wanted
targets of various companies. With few in engineers and many in demand, operator optimization and automation is the
general trend in the future.

automatic.png

Recently, AutoKernel, an automatic operator optimization tool dedicated to lowering the optimization threshold and
improving the efficiency of optimization development, is officially open source.

autokernel.png
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9.1 Features of AutoKernel

• Low threshold: no knowledge threshold for bottom-level optimization compilation.

• Simple and easy to use: Providing a docker environment, no need to install the environment, the plugin is inte-
grated into the inference framework Tengine with one click.

• High efficiency: no need to write optimized assembly, one-click to generate optimized code and one click to
deploy.

AutoKernel uses Halide, an automatic code generation project widely used in the industry, to automatically generate
the underlying code by inputting calculation descriptions and scheduling strategies. AutoKernel supports one-click
deployment of the generated automatic optimization operator to the inference framework Tengine in the form of a
plugin.

9.2 Optimization tutorial of GEMM

Here, this tutorial will lead you to optimize the matrix multiplication GEMM step by step. There is no need to manually
code, compile complicated and lengthy low-level assembly code, but only need a dozen lines of concise scheduling
code.

gemm.jpg

Two optimization goalsBefore explaining the optimization steps in detail, let’s talk about the essence of optimization.
When we were talking about “optimization”, what did the bottom layer of the computer do? What is the “bottleneck”
of optimization? Why can performance be improved through a wave of “optimization operations”? How does Halide
used by AutoKernel achieve automatic optimization?To answer these questions, we need to understand the basic archi-
tecture of the hardware and understand how the hardware works, so that when implementing algorithms in software, we
should consider using some of the characteristics of the hardware as much as possible to achieve efficient and extreme
optimization.
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memory.png

The figure listed above is a typical memory processor hierarchy: the main memory has a large capacity, with a slow
access speed, and the register and cache read speed is fast, but the capacity is limited. At the register level, the CPU
can access them within one clock cycle. If the CPU accesses the external DDR, the delay is very large, about 200 clock
cycles. If the CPU accesses the cache, it usually takes 6 to 12 cycles. Therefore, a very important optimization goal is:
Optimize memory access, make full use of registers and caches to store data.

The second optimization goal is to improve parallelism: make full use of SIMD for instruction vectorization and
multi-core parallelism. Most modern CPUs support SIMD (Single Instruction Multiple Data). In the same CPU cycle,
SIMD can execute the same operation/instruction on multiple values at the same time. If we vectorize on 4 data points
and calculate 4 data at a time, we can theoretically achieve 4 times speedup.

Operating environment preparationAutoKernel provides a docker image, with the running environment being con-
figured, and user can run the demo code directly after entering the docker

# Pull mirror
docker pull openailab/autokernel
# Start the container and enter the development environment
docker run -it openailab/autokernel /bin/bash
# access codes
git clone https://github.com/OAID/AutoKernel.git
cd AutoKernel/doc/tutorials/data/

The build.sh in the directory is the execution script of the demo. To run, user need to specify the optimization step ‘step’.
The optional step is from 1 to 7, where step=1 is not optimized by default, and step=7 is the most optimized.Effect of
optimization

# run demo
./build.sh 1
./build.sh 7

The following figure shows the optimization effect on a computer with Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz.
There is no need to manually write code, no need to write complicated and lengthy low-level assembly code, only a
dozen lines of concise scheduling code , The performance can be optimized by 200+ times.
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Figure1.png

Detailed optimizatio stepsSTEP 1The first step is without any optimization. Use Halide language to directly describe
the calculation process of GEMM.

1. Var x,y;
2. RDom k(0, K);
3. Func gemm("gemm");
4. gemm(x, y) += A(k, y) * B(x, k);

Calculate the matrix multiplication of M=N=K=640. The first parameter of the running script specifies step=1. The
time-consuming results are as follows

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 1
step = 1
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 240.8523 ms ␣
→˓1.1376 ms

STEP 2In this step, we use tiled tiles. The purpose of Tiling is to make full use of the cache. If the original loop is
large, the tiles are changed to small pieces of data to calculate, so that the data calculated each time can stay in the cache
more comfortably, without repeated eviction (repeat adding and deleting data in the cache) . The reorder operation is
performed after the block is divided, the order of the two nested loops is exchanged, and the purpose is to make the
innermost memory access friendly. We divide the x and y dimensions into 16x8 small blocks to calculate

1. gemm.update()
2. .tile(x, y, xo, yo, xi, yi, 16, 8)
3. .reorder(xi, yi, k, xo, yo);

execution result

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 2
step = 2
M N K = 640 640 640 err 0.00 [rep 50] halide | blas 81.8148 ms 1.1281 ms

Performance has been optimized from 240ms to 82ms, an increase of nearly 3 times.

STEP 3We add ‘vectorize’ based on the previous step. Vectorization is to convert several scalar calculations (scale) into
a vector calculation (vector), making full use of SIMD vector instructions. Most modern CPUs support SIMD (Single
Instruction Multiple Data). In the same CPU cycle, SIMD can execute the same operation/instruction on multiple
values at the same time.

1. gemm.update()
2. .tile(x, y, xo, yo, xi, yi, 16, 8)
3. .reorder(xi, yi, k, xo, yo)
4. .vectorize(xi, 8);

execution result

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 3
step = 3
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 27.5433 ms ␣
→˓1.1445 ms
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The performance was optimized from 82ms to 27ms, which was accelerated by nearly 3 times. It can
be found that around the two optimization purposes mentioned above: optimizing memory access and
improving parallelism, from step1 to step3, the performance has been improved by nearly 9 times.

STEP 4The scheduling strategy adds parallelization on the basis of step3. Parallelizing a loop is to divide each iteration
of the loop into multiple threads or processors for simultaneous processing. Each thread processes through the code
segment (loop body), but processes different data.

1. gemm(x, y) += A(k, y) * B(x, k);
2. gemm.update()
3. .tile(x, y, xo, yo, xi, yi, 16, 8)
4. .reorder(xi, yi, k, xo, yo)
5. .vectorize(xi, 8)
6. .parallel(yo);

execution result

root@bd3faab0f079:/home/chunying/AutoKernel/doc/tutorials# ./06_build.sh 4
step = 4
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 7.2605 ms ␣
→˓1.1605 ms

After adding parallelization, build.sh specifies four threads by default, and the performance is directly
increased by nearly 4 times, from 27ms to 7.3ms.

STEP 5The scheduling strategy adds unroll expansion on the basis of the previous step. If the statements in the loop
body have no data-related dependencies, loop unrolling can increase the chance of concurrent execution, make full use
of registers, and reduce the number of times each operation memory is loaded and saved during the loop.

1. gemm.update()
2. .tile(x, y, xo, yo, xi, yi, 16, 8)
3. .reorder(xi, yi, k, xo, yo)
4. .vectorize(xi, 8)
5. .parallel(yo)
6. .unroll(xi)
7. .unroll(yi,2);

execution result

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 5
step = 5
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 4.7617 ms ␣
→˓1.1597 ms

After unroll is expanded, the performance is optimized from 7.3ms to 4.8ms.

STEP 6The previous block is divided into 16 x 8 small kernels. This step is first divided into 16 x 32 blocks, and then
each block is divided into 16 x 8 sub-blocks. We merge the two outermost loops into one layer and parallelize this layer.
The calculation description in this step adds a prod function to define the calculation of sub-blocks. The calculation
formula of the prod function is the same as the total gemm. We use compute_at to specify the calculation of prod under
the one dimension, and the calculation of prod is 16x8. kernel, the general logic is as follows:
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step6.png

Codes are listed below

1. Func prod;
2. prod(x, y) += A(k, y) * B(x, k);
3. gemm(x, y) = prod(x, y);
4.
5. gemm.tile(x, y, xi, yi, 16, 32)
6. .fuse(x, y, xy).parallel(xy)
7. .split(yi, yi, yii, 4)
8. .vectorize(xi, 8)
9. .unroll(xi)
10. .unroll(yii);
11.
12. prod.compute_at(gemm, yi)
13. .vectorize(x, 8).unroll(y);
14.
15. prod.update()
16. .reorder(x, y, k)
17. .vectorize(x, 8)
18. .unroll(x)
19. .unroll(y)
20. .unroll(k, 2);

execution result

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 6
step = 6
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 3.1824 ms ␣
→˓1.1373 ms

The performance of this step has been optimized by nearly 80 times from STEP1, and the performance is
getting closer and closer to OpenBlas.

STEP 7The operation added in this step is to rearrange the data of matrix B to make the memory read smoother when
calculating the small kernel 16x8. Because the x dimension of the small kernel is divided according to 16, the x
dimension of rearranged data B is also rearranged according to 16.
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interleave.png

Codes are listed below

1. Func B_interleave("B"), Bs("Bs");
2. Bs(x, y, xo) = B(xo * 16 + x, y);
3. B_interleave(x, y) = Bs(x % 16, y, x / 16);
4.
5. Func prod;
6. prod(x, y) += A(k, y) * B_interleave(x, k);
7. gemm(x, y) = prod(x, y);
8.
9. gemm.tile(x, y, xi, yi, 16, 32)
10. .fuse(x, y, xy).parallel(xy)
11. .split(yi, yi, yii, 4)
12. .vectorize(xi, 8)
13. .unroll(xi)
14. .unroll(yii);
15.
16. prod.compute_at(gemm, yi)
17. .vectorize(x, 8).unroll(y);
18.
19. prod.update()
20. .reorder(x, y, k)
21. .vectorize(x, 8)
22. .unroll(x)
23. .unroll(y)
24. .unroll(k, 2);
25. Bs.compute_root()
26. .split(y, yo, yi, 16)
27. .reorder(x, yi, xo, yo)
28. .unroll(x)
29. .vectorize(yi).parallel(yo, 4);
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execution result

root@bd3faab0f079:/AutoKernel/doc/tutorials/data# ./06_build.sh 7
step = 7
M N K = 640 640 640 err 0.00 [rep 50] autokernel | blas 1.1957 ms ␣
→˓1.1425 ms

So far, every step of our tuning strategy has always been optimized around the two optimization purposes “optimizing
memory access” and “improving parallelism”. In the end, the performance is almost the same as OpenBlAS, and the
distance from STEP1 has been accelerated by 200+ times.
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TEN

AUTOKERNEL: TO KNOW MORE ABOUT AI COMPILER

10.1 Overview of AI Compiler

In recent years, AI technology oriented with machine learning and deep learning has been rapidly developed, and deep
neural networks have been widely used in various domains:

1. CV (computer vision): object detection, scene recognition, image segmentation, etc.

2. Smart voice: voice recognition, voiceprint recognition, etc.

3. NLP (Natural Language Processing): automatic search engine, dialogue service robot, text classification, intel-
ligent translation, etc.

4. Scientific research: applied in many research fields such as physics, biology, medicine, etc. High-energy particle
collision classification, cosmic celestial map data analysis, galaxy shape modeling, protein folding prediction of
biological structure, precision medical treatment and disease prediction.

Figure1.png

These applications have spawned more new models: CNN, RNN, LSTM, GAN, GNN, and also spawned the emergence
of deep learning frameworks such as Tensorflow, Pytorch, Mxnet, and Caffe. At present, the training framework has
begun to converge, gradually forming a duo situation where PyTorch leads the academic world and TensorFlow leads
the industry.
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However, in order for deep learning algorithms to be implemented, they must be deployed on hardware, such as Google’s
TPU, Huawei’s Kirin NPU, and other architectural innovations on FPGA.

Figure2.png

When it comes to how to deploy the models trained by these training frameworks to different terminal hardware, this
requires a deep learning neural network compiler to solve this problem.

Before the emergence of neural network compilers, we used traditional compilers.

Traditional Compilers

Take LLVM (low level virtual machine) as an example, its input is high-level programming language source code, and
its output is machine code. It consists of a series of modular compiler components and tool chains.LLVM is divided into
three parts: front-end, middle-end (optimized) and back-end through modules. Whenever a new programming language
appears, only the corresponding front-end needs to be developed, and the programming language is converted into the
intermediate representation of LLVM; similarly, when a new hardware architecture appears, only the corresponding
back-end needs to be developed and connected to the intermediate representation of LLVM.The modularization avoids
the problem of compiler adaptability caused by the refurbishment of the programming language and CPU architecture,
and greatly simplifies the development of the compiler.

Figure3.png

Neutral Network Compiler

Its input is the model definition file trained by the deep learning training framework, and the output is the code that can
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be efficiently executed on different hardware.

Figure6.png

It is composed of four levels from top to bottom

1. The top layer is connected to the algorithm models trained by various deep learning training frameworks (Ten-
sorflow, Caffe, Pytorch, Mxnet, etc.).

2. Layer level (High-level IR): The structure of the neural network can be expressed as a calculation graph, and
layer-level operations are to perform some operations on the calculation graph that have nothing to do with the
specific hardware and framework, such as operator fusion, memory allocation optimization, Derivation of data
types and data dimensions, etc.

Figure4.png

We can use operator fusion to avoid frequent direct reading and writing of intermediate data between
registers and memory, thereby improving overall inference performance
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Figure5.png

Nividia has achieved a threefold increase in inference performance by fusing conv, bn, and relu into one
operator fuse-CBR.

1. Operator level (operator level/kernel level): The operator level is mainly about tensor calculation. In order
to realize these calculations efficiently on the hardware and give full play to the performance of the chip, the
hardware chip is usually equipped with specially optimized operator calculation libraries, such as Intel’s MKL,
Nvidia’s CuDNN, and TensorRT. This level needs to support every operator implementation of every hardware
backend.

2. Various hardware backends: GPU, ARM CPU, X86 CPU, NPU, etc.

Figure7.png

Since the concept of the deep learning compiler was put forward, various types of compilers have emerged
in an endless stream
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10.2 TVM

In the wave of rapid development of compilers, one of the most prominent one is TVM (Tensor Virtual Machine)

TVM was first proposed in 2017 as a compiler stack for deep learning systems.

The design of the first generation of TVM draws on the design ideas of the traditional compiler framework LLVM,
and the design abstracts the middle presentation layer. Different models only need to develop corresponding front-end
interfaces, and different back-ends only need to develop corresponding back-end interfaces.

TVM is called Tensor Virtual Machine, which belongs to the operator level. It is mainly used for tensor calculation and
provides an intermediate representation of the underlying calculation independent of the hardware. Various methods
(circular block, cache optimization, etc.) are used to optimize the corresponding calculation. The first generation of
layer-level representation is called NNVM (Neural Network Virtual Machine). The design goal of NNVM is to convert
the calculation graph from a different deep learning framework into a unified intermediate representation (IR) of the
calculation graph and optimize it.

The first generation of static images has certain defects:

1. Cannot support control flow well, such as branch jump, loop, etc.

2. Can not support the input shape of the calculation graph, depending on the input tensor size model, such as
word2vec.

Although Tensorflow has a control interface like tf.cond.Tf.while_loop to solve the first problem to some extent, tf.fold
solves the second problem, but this method is not particularly friendly for rookies who have just come into contact with
deep learning framework.

The dynamic graphs that appear later abandon the traditional way of calculating graphs that are defined first and then
executed, and adopt the mode defined by the calculation graph at runtime. This kind of calculation graph is called a
dynamic graph.

The graph calculation layer of the second-generation TVM becomes Relay VM. The main difference between Relay
and the first-generation graph calculation indicator NNVM is that in addition to supporting dataflow (static graph),
Relay IR can better solve control flow (dynamic graph). It is not only an intermediate representation of a calculation
graph, but also supports automatic differentiation.

Figure19.png

To sum up, the current structure of TVM is:
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1. The highest level supports mainstream deep learning front-end frameworks, including TensorFlow, MXNet, Py-
torch, etc.

2. Relay IR supports differentiability. This level performs graph fusion, data rearrangement and other graph opti-
mization operations.

3. Based on the tensor quantization calculation graph and the hardware primitive-level optimization according to the
back-end, autoTVM explores the search space according to the optimization goal and finds the optimal solution.

4. The backend supports ARM, CUDA/Metal/OpenCL, accelerator VTA (Versatile Tensor Accelerator).

10.3 Halide

Halide was proposed in 2012 and is mainly used for automatic optimization. Embedded in C++, it is a programming
language specially designed for image processing by MIT researchers. The Halide language is easy to write, simple
in grammar, clear in data structure, and can automatically optimize the code, so that the program can achieve better
execution efficiency.The core idea of its design is to separate algorithm and scheduling. The advantage of this is that
in the case of a given algorithm, you only need to adjust its Schedule scheduling options, without having to rewrite the
algorithm to implement a different schedule. When adjusting the schedule and exploring the design space, there is no
worry that the correctness of the calculation will change due to the rewriting of the algorithm.

The Algorithm part is mainly the mathematical expression of algorithm description and calculation.The Schedule part
tells the machine when to allocate memory and how to calculate (block calculation or sequential calculation)-some
scheduling strategies have been provided.
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Figure17.png
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Figure18.png

Different scheduling strategies consider the trade-off between repeated redundant calculations and locality

10.4 AutoKernel

Whether the deep learning model can be successfully applied to the terminal and meet the product needs, a key indicator
is the reasoning performance of the neural network model.

The current high-performance operator calculation library is mainly developed manually by high-performance com-
puting optimization engineers. However, the continuous emergence of new algorithms/hardware has led to a huge
workload of operator-level optimization and development. At the same time, optimizing the code is not a simple task.
It requires engineers to be proficient in computer architecture as well as to be familiar with the calculation process
of operators.There are few talents, high demand, and high technical threshold. Therefore, we believe that operator
optimization and automation is the general trend in the future. The original intention of proposing AutoKernel is to
automate this process, start small, optimize at the operator level, and realize the automatic generation of optimized
code.
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Figure11.png

The input of AutoKernel is the calculation description of the operator (such as Conv, Poll, Fc), and the output is the
optimized acceleration source code.The development of this tool aims to lower the threshold of optimization work,
without the knowledge threshold of the underlying assembly, and no need to write the optimization assembly by hand.
The assembly code can be generated by directly calling the developed toolkit. At the same time, it also provides a
docker environment containing CPU and GPU, no need to deploy development environment, just use docker. You can
also integrate the automatically generated operator into the inference framework-Tengine with one click through the
provided plug-in-plugin.

Figure12.png

Correspondingly, the AutoKernel at the operator level is mainly divided into three modules,

1. Op Generator: Operator generator, using the open source Hallide.

2. AutoSearch: Currently under development, the goal is to automatically search for optimization strategies through
machine learning and reinforcement learning commonly used algorithms.

3. AutoKernel Plugin: Insert the generated automatic operator into Tengine in the form of a plug-in, which com-
plements manual customization.
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Figure13.png

The Tengine object layer is connected to different neural network models. The layer-level NNIR includes
model analysis and layer optimization, and the operator level includes the high-performance computing
library (HCL lib).

AutoKernel Plugin is mainly divided into two parts: generation and deployment. In the generation part, Halid is used
to fill in the algorithm description and scheduling strategy, and the back-end type is specified during execution (which
basically covers the current mainstream back-ends). The deployment part is packaged as a Tengine library and directly
called.

Figure14.png

We believe that with the contribution of more developers, the AutoKernel community will have greater breakthroughs
and growth, leaving a strong fortune in the field of deep learning compilers in the future!
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